1
5
4
新手上路
高分辨率和高级语义表示对于密集预测都至关重要。从经验上看,低分辨率特征地图通常实现更强的语义表示,而高分辨率特征地图一般可以更好地识别边缘等局部特征,但包含较弱的语义信息。现有的最先进的框架(如HRNet)保持了低分辨率和高分辨率特征地图的并行性,并在不同分辨率之间反复交换信息。然而,我们认为,最低分辨率的特征地图往往包含最强的语义信息,需要经过更多层才能与高分辨率特征地图合并,而对于高分辨率特征图,每个卷积层的计算成本非常大,不需要经过这么多层。因此,我们设计了一个U形高分辨率网络(U-HRNet),它在语义表示最强的特征图之后添加更多的阶段,并放松了HRNet中的约束,即新添加的阶段需要并行计算所有分辨率。为低分辨率特征地图分配了更多计算,这大大改善了整体语义表示。U-HRNet是HRNet主干的替代品,可以在完全相同的训练和推理设置下,在多个语义分割和深度预测数据集上实现显著改进,而计算量几乎没有增加。 代码可从PaddleSeg获取:https://github.com/PaddlePaddle/PaddleSeg
使用道具 举报
3
8
18
本版积分规则 发表回复 回帖后跳转到最后一页